Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Physiological and biochemical responses to aluminum-induced oxidative stress in two cyanobacterial species.

Identifieur interne : 000414 ( Main/Exploration ); précédent : 000413; suivant : 000415

Physiological and biochemical responses to aluminum-induced oxidative stress in two cyanobacterial species.

Auteurs : Seham M. Hamed [Égypte] ; Sherif H. Hassan [Égypte] ; Samy Selim [Égypte] ; Amit Kumar [Inde] ; Sameh M H. Khalaf [Arabie saoudite] ; Mohammed A M. Wadaan [Arabie saoudite] ; Wael N. Hozzein [Égypte] ; Hamada Abdelgawad [Belgique]

Source :

RBID : pubmed:31234263

Descripteurs français

English descriptors

Abstract

Phycoremediation technologies significantly contribute to solving serious problems induced by heavy metals accumulation in the aquatic systems. Here we studied the mechanisms underlying Al stress tolerance in two diazotrophic cyanobacterial species, to identify suitable species for Al phycoremediation. Al uptake as well as the physiological and biochemical responses of Anabaena laxa and Nostoc muscorum to 7 days Al exposure at two different concentrations i.e., mild (100 μM) and high dose (200 μM), were investigated. Our results revealed that A. laxa accumulated more Al, and it could acclimatize to long-term exposure of Al stress. Al induced a dose-dependent decrease in photosynthesis and its related parameters e.g., chlorophyll content (Chl a), phosphoenolpyruvate carboxylase (PEPC) and Ribulose‒1,5‒bisphosphate carboxylase/oxygenase (RuBisCo) activities. The affect was less pronounced in A. laxa than N. muscorum. Moreover, Al stress significantly increased cellular membrane damage as indicated by induced H2O2, lipid peroxidation, protein oxidation, and NADPH oxidase activity. However, these increases were lower in A. laxa compared to N. muscorum. To mitigate the impact of Al stress, A. laxa induced its antioxidant defense system by increasing polyphenols, flavonoids, tocopherols and glutathione levels as well as peroxidase (POX), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPX) enzymes activities. On the other hand, the antioxidant increases in N. muscorum were only limited to ascorbate (ASC) cycle. Overall, high biosorption/uptake capacity and efficient antioxidant defense system of A. laxa recommend its feasibility in the treatment of Al contaminated waters/soils.

DOI: 10.1016/j.envpol.2019.05.036
PubMed: 31234263


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Physiological and biochemical responses to aluminum-induced oxidative stress in two cyanobacterial species.</title>
<author>
<name sortKey="Hamed, Seham M" sort="Hamed, Seham M" uniqKey="Hamed S" first="Seham M" last="Hamed">Seham M. Hamed</name>
<affiliation wicri:level="1">
<nlm:affiliation>Soil Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, P.O. 175, El‒Orman, Egypt. Electronic address: seham_mousa@sweri-eg.com.</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Soil Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, P.O. 175, El‒Orman</wicri:regionArea>
<wicri:noRegion>El‒Orman</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hassan, Sherif H" sort="Hassan, Sherif H" uniqKey="Hassan S" first="Sherif H" last="Hassan">Sherif H. Hassan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O, 2014, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521, Egypt.</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O, 2014, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521</wicri:regionArea>
<wicri:noRegion>62521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Selim, Samy" sort="Selim, Samy" uniqKey="Selim S" first="Samy" last="Selim">Samy Selim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O, 2014, Saudi Arabia; Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O.Box, 41522, Egypt.</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O, 2014, Saudi Arabia; Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O.Box, 41522</wicri:regionArea>
<wicri:noRegion>41522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Amit" sort="Kumar, Amit" uniqKey="Kumar A" first="Amit" last="Kumar">Amit Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Chennai, 600119, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Chennai, 600119</wicri:regionArea>
<wicri:noRegion>600119</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khalaf, Sameh M H" sort="Khalaf, Sameh M H" uniqKey="Khalaf S" first="Sameh M H" last="Khalaf">Sameh M H. Khalaf</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.</nlm:affiliation>
<country xml:lang="fr">Arabie saoudite</country>
<wicri:regionArea>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451</wicri:regionArea>
<wicri:noRegion>11451</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wadaan, Mohammed A M" sort="Wadaan, Mohammed A M" uniqKey="Wadaan M" first="Mohammed A M" last="Wadaan">Mohammed A M. Wadaan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.</nlm:affiliation>
<country xml:lang="fr">Arabie saoudite</country>
<wicri:regionArea>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451</wicri:regionArea>
<wicri:noRegion>11451</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hozzein, Wael N" sort="Hozzein, Wael N" uniqKey="Hozzein W" first="Wael N" last="Hozzein">Wael N. Hozzein</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521, Egypt.</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521</wicri:regionArea>
<wicri:noRegion>62521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abdelgawad, Hamada" sort="Abdelgawad, Hamada" uniqKey="Abdelgawad H" first="Hamada" last="Abdelgawad">Hamada Abdelgawad</name>
<affiliation wicri:level="1">
<nlm:affiliation>Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp</wicri:regionArea>
<wicri:noRegion>Antwerp</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31234263</idno>
<idno type="pmid">31234263</idno>
<idno type="doi">10.1016/j.envpol.2019.05.036</idno>
<idno type="wicri:Area/Main/Corpus">000411</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000411</idno>
<idno type="wicri:Area/Main/Curation">000411</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000411</idno>
<idno type="wicri:Area/Main/Exploration">000411</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Physiological and biochemical responses to aluminum-induced oxidative stress in two cyanobacterial species.</title>
<author>
<name sortKey="Hamed, Seham M" sort="Hamed, Seham M" uniqKey="Hamed S" first="Seham M" last="Hamed">Seham M. Hamed</name>
<affiliation wicri:level="1">
<nlm:affiliation>Soil Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, P.O. 175, El‒Orman, Egypt. Electronic address: seham_mousa@sweri-eg.com.</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Soil Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, P.O. 175, El‒Orman</wicri:regionArea>
<wicri:noRegion>El‒Orman</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hassan, Sherif H" sort="Hassan, Sherif H" uniqKey="Hassan S" first="Sherif H" last="Hassan">Sherif H. Hassan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O, 2014, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521, Egypt.</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O, 2014, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521</wicri:regionArea>
<wicri:noRegion>62521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Selim, Samy" sort="Selim, Samy" uniqKey="Selim S" first="Samy" last="Selim">Samy Selim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O, 2014, Saudi Arabia; Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O.Box, 41522, Egypt.</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O, 2014, Saudi Arabia; Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O.Box, 41522</wicri:regionArea>
<wicri:noRegion>41522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Amit" sort="Kumar, Amit" uniqKey="Kumar A" first="Amit" last="Kumar">Amit Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Chennai, 600119, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Chennai, 600119</wicri:regionArea>
<wicri:noRegion>600119</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khalaf, Sameh M H" sort="Khalaf, Sameh M H" uniqKey="Khalaf S" first="Sameh M H" last="Khalaf">Sameh M H. Khalaf</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.</nlm:affiliation>
<country xml:lang="fr">Arabie saoudite</country>
<wicri:regionArea>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451</wicri:regionArea>
<wicri:noRegion>11451</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wadaan, Mohammed A M" sort="Wadaan, Mohammed A M" uniqKey="Wadaan M" first="Mohammed A M" last="Wadaan">Mohammed A M. Wadaan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.</nlm:affiliation>
<country xml:lang="fr">Arabie saoudite</country>
<wicri:regionArea>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451</wicri:regionArea>
<wicri:noRegion>11451</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hozzein, Wael N" sort="Hozzein, Wael N" uniqKey="Hozzein W" first="Wael N" last="Hozzein">Wael N. Hozzein</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521, Egypt.</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521</wicri:regionArea>
<wicri:noRegion>62521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abdelgawad, Hamada" sort="Abdelgawad, Hamada" uniqKey="Abdelgawad H" first="Hamada" last="Abdelgawad">Hamada Abdelgawad</name>
<affiliation wicri:level="1">
<nlm:affiliation>Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp</wicri:regionArea>
<wicri:noRegion>Antwerp</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental pollution (Barking, Essex : 1987)</title>
<idno type="eISSN">1873-6424</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminum (metabolism)</term>
<term>Anabaena (metabolism)</term>
<term>Antioxidants (metabolism)</term>
<term>Ascorbic Acid (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Catalase (metabolism)</term>
<term>Chlorophyll (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Reductase (metabolism)</term>
<term>Lipid Peroxidation (MeSH)</term>
<term>Nostoc muscorum (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Peroxidases (metabolism)</term>
<term>Phosphoenolpyruvate Carboxylase (metabolism)</term>
<term>Photosynthesis (drug effects)</term>
<term>Ribulose-Bisphosphate Carboxylase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide ascorbique (métabolisme)</term>
<term>Aluminium (métabolisme)</term>
<term>Anabaena (métabolisme)</term>
<term>Antioxydants (métabolisme)</term>
<term>Catalase (métabolisme)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Glutathione reductase (métabolisme)</term>
<term>Nostoc muscorum (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxidases (métabolisme)</term>
<term>Peroxydation lipidique (MeSH)</term>
<term>Phosphoenolpyruvate carboxylase (métabolisme)</term>
<term>Photosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Ribulose bisphosphate carboxylase (métabolisme)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aluminum</term>
<term>Antioxidants</term>
<term>Ascorbic Acid</term>
<term>Catalase</term>
<term>Chlorophyll</term>
<term>Glutathione</term>
<term>Glutathione Reductase</term>
<term>Peroxidases</term>
<term>Phosphoenolpyruvate Carboxylase</term>
<term>Ribulose-Bisphosphate Carboxylase</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Oxidative Stress</term>
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Photosynthèse</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Anabaena</term>
<term>Nostoc muscorum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide ascorbique</term>
<term>Aluminium</term>
<term>Anabaena</term>
<term>Antioxydants</term>
<term>Catalase</term>
<term>Chlorophylle</term>
<term>Glutathion</term>
<term>Glutathione reductase</term>
<term>Nostoc muscorum</term>
<term>Peroxidases</term>
<term>Phosphoenolpyruvate carboxylase</term>
<term>Ribulose bisphosphate carboxylase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Lipid Peroxidation</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dépollution biologique de l'environnement</term>
<term>Oxydoréduction</term>
<term>Peroxydation lipidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phycoremediation technologies significantly contribute to solving serious problems induced by heavy metals accumulation in the aquatic systems. Here we studied the mechanisms underlying Al stress tolerance in two diazotrophic cyanobacterial species, to identify suitable species for Al phycoremediation. Al uptake as well as the physiological and biochemical responses of Anabaena laxa and Nostoc muscorum to 7 days Al exposure at two different concentrations i.e., mild (100 μM) and high dose (200 μM), were investigated. Our results revealed that A. laxa accumulated more Al, and it could acclimatize to long-term exposure of Al stress. Al induced a dose-dependent decrease in photosynthesis and its related parameters e.g., chlorophyll content (Chl a), phosphoenolpyruvate carboxylase (PEPC) and Ribulose‒1,5‒bisphosphate carboxylase/oxygenase (RuBisCo) activities. The affect was less pronounced in A. laxa than N. muscorum. Moreover, Al stress significantly increased cellular membrane damage as indicated by induced H
<sub>2</sub>
O
<sub>2,</sub>
lipid peroxidation, protein oxidation, and NADPH oxidase activity. However, these increases were lower in A. laxa compared to N. muscorum. To mitigate the impact of Al stress, A. laxa induced its antioxidant defense system by increasing polyphenols, flavonoids, tocopherols and glutathione levels as well as peroxidase (POX), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPX) enzymes activities. On the other hand, the antioxidant increases in N. muscorum were only limited to ascorbate (ASC) cycle. Overall, high biosorption/uptake capacity and efficient antioxidant defense system of A. laxa recommend its feasibility in the treatment of Al contaminated waters/soils.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31234263</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>08</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-6424</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>251</Volume>
<PubDate>
<Year>2019</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Environmental pollution (Barking, Essex : 1987)</Title>
<ISOAbbreviation>Environ Pollut</ISOAbbreviation>
</Journal>
<ArticleTitle>Physiological and biochemical responses to aluminum-induced oxidative stress in two cyanobacterial species.</ArticleTitle>
<Pagination>
<MedlinePgn>961-969</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0269-7491(18)35749-X</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.envpol.2019.05.036</ELocationID>
<Abstract>
<AbstractText>Phycoremediation technologies significantly contribute to solving serious problems induced by heavy metals accumulation in the aquatic systems. Here we studied the mechanisms underlying Al stress tolerance in two diazotrophic cyanobacterial species, to identify suitable species for Al phycoremediation. Al uptake as well as the physiological and biochemical responses of Anabaena laxa and Nostoc muscorum to 7 days Al exposure at two different concentrations i.e., mild (100 μM) and high dose (200 μM), were investigated. Our results revealed that A. laxa accumulated more Al, and it could acclimatize to long-term exposure of Al stress. Al induced a dose-dependent decrease in photosynthesis and its related parameters e.g., chlorophyll content (Chl a), phosphoenolpyruvate carboxylase (PEPC) and Ribulose‒1,5‒bisphosphate carboxylase/oxygenase (RuBisCo) activities. The affect was less pronounced in A. laxa than N. muscorum. Moreover, Al stress significantly increased cellular membrane damage as indicated by induced H
<sub>2</sub>
O
<sub>2,</sub>
lipid peroxidation, protein oxidation, and NADPH oxidase activity. However, these increases were lower in A. laxa compared to N. muscorum. To mitigate the impact of Al stress, A. laxa induced its antioxidant defense system by increasing polyphenols, flavonoids, tocopherols and glutathione levels as well as peroxidase (POX), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPX) enzymes activities. On the other hand, the antioxidant increases in N. muscorum were only limited to ascorbate (ASC) cycle. Overall, high biosorption/uptake capacity and efficient antioxidant defense system of A. laxa recommend its feasibility in the treatment of Al contaminated waters/soils.</AbstractText>
<CopyrightInformation>Copyright © 2019. Published by Elsevier Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hamed</LastName>
<ForeName>Seham M</ForeName>
<Initials>SM</Initials>
<AffiliationInfo>
<Affiliation>Soil Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, P.O. 175, El‒Orman, Egypt. Electronic address: seham_mousa@sweri-eg.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hassan</LastName>
<ForeName>Sherif H</ForeName>
<Initials>SH</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O, 2014, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521, Egypt.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Selim</LastName>
<ForeName>Samy</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O, 2014, Saudi Arabia; Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O.Box, 41522, Egypt.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Amit</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Chennai, 600119, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khalaf</LastName>
<ForeName>Sameh M H</ForeName>
<Initials>SMH</Initials>
<AffiliationInfo>
<Affiliation>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wadaan</LastName>
<ForeName>Mohammed A M</ForeName>
<Initials>MAM</Initials>
<AffiliationInfo>
<Affiliation>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hozzein</LastName>
<ForeName>Wael N</ForeName>
<Initials>WN</Initials>
<AffiliationInfo>
<Affiliation>Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521, Egypt.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>AbdElgawad</LastName>
<ForeName>Hamada</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Botany and Microbiology Department, Faculty of Science, Beni‒Suef University, Beni‒Suef, 62521, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Environ Pollut</MedlineTA>
<NlmUniqueID>8804476</NlmUniqueID>
<ISSNLinking>0269-7491</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>CPD4NFA903</RegistryNumber>
<NameOfSubstance UI="D000535">Aluminum</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.6</RegistryNumber>
<NameOfSubstance UI="D002374">Catalase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.7</RegistryNumber>
<NameOfSubstance UI="D005980">Glutathione Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.31</RegistryNumber>
<NameOfSubstance UI="D010730">Phosphoenolpyruvate Carboxylase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.39</RegistryNumber>
<NameOfSubstance UI="D012273">Ribulose-Bisphosphate Carboxylase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PQ6CK8PD0R</RegistryNumber>
<NameOfSubstance UI="D001205">Ascorbic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000535" MajorTopicYN="N">Aluminum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017033" MajorTopicYN="N">Anabaena</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001205" MajorTopicYN="N">Ascorbic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="Y">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002374" MajorTopicYN="N">Catalase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005980" MajorTopicYN="N">Glutathione Reductase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015227" MajorTopicYN="N">Lipid Peroxidation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050502" MajorTopicYN="N">Nostoc muscorum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010730" MajorTopicYN="N">Phosphoenolpyruvate Carboxylase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012273" MajorTopicYN="N">Ribulose-Bisphosphate Carboxylase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Aluminum detoxification</Keyword>
<Keyword MajorTopicYN="N">Cyanobacteria</Keyword>
<Keyword MajorTopicYN="N">Oxidative stress</Keyword>
<Keyword MajorTopicYN="N">Photosynthesis reactions</Keyword>
<Keyword MajorTopicYN="N">Phycoremediation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31234263</ArticleId>
<ArticleId IdType="pii">S0269-7491(18)35749-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.envpol.2019.05.036</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Arabie saoudite</li>
<li>Belgique</li>
<li>Inde</li>
<li>Égypte</li>
</country>
</list>
<tree>
<country name="Égypte">
<noRegion>
<name sortKey="Hamed, Seham M" sort="Hamed, Seham M" uniqKey="Hamed S" first="Seham M" last="Hamed">Seham M. Hamed</name>
</noRegion>
<name sortKey="Hassan, Sherif H" sort="Hassan, Sherif H" uniqKey="Hassan S" first="Sherif H" last="Hassan">Sherif H. Hassan</name>
<name sortKey="Hozzein, Wael N" sort="Hozzein, Wael N" uniqKey="Hozzein W" first="Wael N" last="Hozzein">Wael N. Hozzein</name>
<name sortKey="Selim, Samy" sort="Selim, Samy" uniqKey="Selim S" first="Samy" last="Selim">Samy Selim</name>
</country>
<country name="Inde">
<noRegion>
<name sortKey="Kumar, Amit" sort="Kumar, Amit" uniqKey="Kumar A" first="Amit" last="Kumar">Amit Kumar</name>
</noRegion>
</country>
<country name="Arabie saoudite">
<noRegion>
<name sortKey="Khalaf, Sameh M H" sort="Khalaf, Sameh M H" uniqKey="Khalaf S" first="Sameh M H" last="Khalaf">Sameh M H. Khalaf</name>
</noRegion>
<name sortKey="Wadaan, Mohammed A M" sort="Wadaan, Mohammed A M" uniqKey="Wadaan M" first="Mohammed A M" last="Wadaan">Mohammed A M. Wadaan</name>
</country>
<country name="Belgique">
<noRegion>
<name sortKey="Abdelgawad, Hamada" sort="Abdelgawad, Hamada" uniqKey="Abdelgawad H" first="Hamada" last="Abdelgawad">Hamada Abdelgawad</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000414 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000414 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31234263
   |texte=   Physiological and biochemical responses to aluminum-induced oxidative stress in two cyanobacterial species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31234263" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020